Hamiltonian Cycles and Symmetric Chains in Boolean Lattices
نویسندگان
چکیده
Let B(n) be the subset lattice of {1, 2, . . . , n}. Sperner’s theorem states that the width of B(n) is equal to the size of its biggest level. There have been several elegant proofs of this result, including an approach that shows that B(n) has a symmetric chain partition. Another famous result concerning B(n) is that its cover graph is hamiltonian. Motivated by these ideas and by the Middle Two Levels conjecture, we consider posets that have the Hamiltonian Cycle–Symmetric Chain Partition (HCSCP) property. A poset of widthw has this property if its cover graph has a hamiltonian cycle which parses into w symmetric chains. We show that the subset lattices have the HC-SCP property, and we obtain this result as a special case of a more general treatment.
منابع مشابه
Algebraic Properties of Intuitionistic Fuzzy Residuated Lattices
In this paper, we investigate more relations between the symmetric residuated lattices $L$ with their corresponding intuitionistic fuzzy residuated lattice $tilde{L}$. It is shown that some algebraic structures of $L$ such as Heyting algebra, Glivenko residuated lattice and strict residuated lattice are preserved for $tilde{L}$. Examples are given for those structures that do not remain the sam...
متن کاملRegularity in residuated lattices
In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...
متن کاملCounting Hamiltonian cycles on planar random lattices
Hamiltonian cycles on planar random lattices are considered. The generating function for the number of Hamiltonian cycles is obtained and its singularity is studied. Hamiltonian cycles have often been used to model collapsed polymer globules[1]. A Hamiltonian cycle of a graph is a closed path which visits each of the vertices once and only once. The number of Hamiltonian cycles on a lattice cor...
متن کاملSemi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices
At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...
متن کاملDIRECTLY INDECOMPOSABLE RESIDUATED LATTICES
The aim of this paper is to extend results established by H. Onoand T. Kowalski regarding directly indecomposable commutative residuatedlattices to the non-commutative case. The main theorem states that a residuatedlattice A is directly indecomposable if and only if its Boolean center B(A)is {0, 1}. We also prove that any linearly ordered residuated lattice and anylocal residuated lattice are d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Graphs and Combinatorics
دوره 30 شماره
صفحات -
تاریخ انتشار 2014